PubChem3D: Biologically relevant 3-D similarity
نویسندگان
چکیده
BACKGROUND The use of 3-D similarity techniques in the analysis of biological data and virtual screening is pervasive, but what is a biologically meaningful 3-D similarity value? Can one find statistically significant separation between "active/active" and "active/inactive" spaces? These questions are explored using 734,486 biologically tested chemical structures, 1,389 biological assay data sets, and six different 3-D similarity types utilized by PubChem analysis tools. RESULTS The similarity value distributions of 269.7 billion unique conformer pairs from 734,486 biologically tested compounds (all-against-all) from PubChem were utilized to help work towards an answer to the question: what is a biologically meaningful 3-D similarity score? The average and standard deviation for the six similarity measures STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt were 0.54 ± 0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ± 0.06, and 0.59 ± 0.14, respectively. Considering that this random distribution of biologically tested compounds was constructed using a single theoretical conformer per compound (the "default" conformer provided by PubChem), further study may be necessary using multiple diverse conformers per compound; however, given the breadth of the compound set, the single conformer per compound results may still apply to the case of multi-conformer per compound 3-D similarity value distributions. As such, this work is a critical step, covering a very wide corpus of chemical structures and biological assays, creating a statistical framework to build upon.The second part of this study explored the question of whether it was possible to realize a statistically meaningful 3-D similarity value separation between reputed biological assay "inactives" and "actives". Using the terminology of noninactive-noninactive (NN) pairs and the noninactive-inactive (NI) pairs to represent comparison of the "active/active" and "active/inactive" spaces, respectively, each of the 1,389 biological assays was examined by their 3-D similarity score differences between the NN and NI pairs and analyzed across all assays and by assay category types. While a consistent trend of separation was observed, this result was not statistically unambiguous after considering the respective standard deviations. While not all "actives" in a biological assay are amenable to this type of analysis, e.g., due to different mechanisms of action or binding configurations, the ambiguous separation may also be due to employing a single conformer per compound in this study. With that said, there were a subset of biological assays where a clear separation between the NN and NI pairs found. In addition, use of combo Tanimoto (ComboT) alone, independent of superposition optimization type, appears to be the most efficient 3-D score type in identifying these cases. CONCLUSION This study provides a statistical guideline for analyzing biological assay data in terms of 3-D similarity and PubChem structure-activity analysis tools. When using a single conformer per compound, a relatively small number of assays appear to be able to separate "active/active" space from "active/inactive" space.
منابع مشابه
Effects of multiple conformers per compound upon 3-D similarity search and bioassay data analysis
UNLABELLED BACKGROUND To improve the utility of PubChem, a public repository containing biological activities of small molecules, the PubChem3D project adds computationally-derived three-dimensional (3-D) descriptions to the small-molecule records contained in the PubChem Compound database and provides various search and analysis tools that exploit 3-D molecular similarity. Therefore, the ef...
متن کاملPubChem3D: conformer ensemble accuracy
UNLABELLED BACKGROUND PubChem is a free and publicly available resource containing substance descriptions and their associated biological activity information. PubChem3D is an extension to PubChem containing computationally-derived three-dimensional (3-D) structures of small molecules. All the tools and services that are a part of PubChem3D rely upon the quality of the 3-D conformer models. ...
متن کاملPubChem3D: a new resource for scientists
BACKGROUND PubChem is an open repository for small molecules and their experimental biological activity. PubChem integrates and provides search, retrieval, visualization, analysis, and programmatic access tools in an effort to maximize the utility of contributed information. There are many diverse chemical structures with similar biological efficacies against targets available in PubChem that a...
متن کاملPubChem3D: Diversity of shape
BACKGROUND The shape diversity of 16.4 million biologically relevant molecules from the PubChem Compound database and their 1.46 billion diverse conformers was explored as a function of molecular volume. RESULTS The diversity of shape space was investigated by determining the shape similarity threshold to achieve a maximum on the count of reference shapes per unit of conformer volume. The rat...
متن کاملPubChem3D: Conformer generation
BACKGROUND PubChem, an open archive for the biological activities of small molecules, provides search and analysis tools to assist users in locating desired information. Many of these tools focus on the notion of chemical structure similarity at some level. PubChem3D enables similarity of chemical structure 3-D conformers to augment the existing similarity of 2-D chemical structure graphs. It i...
متن کامل